Indian Statistical Institute, Bangalore B. Math (II)

Second semester 2003-2004 Backpaper Examination : Statistics (II)

Date: 21-07-2004 Maximum Score 50 Duration: 3 Hours

- 1. A manufacturing unit produces digital thermometers. Suppose X denotes the lifetime of a digital thermometer. Suppose also that the lifetime of each thermometer, measured in hours, has exponential distribution with pdf $\lambda e^{-\lambda x}I_{(0,\infty)}(x)$. Suppose $X_1, X_2, ..., X_n$ denote the lifetimes of n randomly selected thermometers produced in the manufacturing unit.
 - (a) Show that $T = \sum_{i=1}^{n} X_i$ is minimal sufficient for λ .
 - (b) Obtain a UMVU estimator for λ .
 - (c) Does the variance of your estimator attain CRLB? Comment.
 - (d) Find $E(T^k)$, k being an integer such that n + k > 0.

[11]

- 2. Bala buys a liter of milk everyday. Suppose his consumption X of milk measured in liter has the following distribution with pdf $\theta x^{\theta-1}I_{(0,1)}(x)$; $\theta > 0$. Let $X_1, X_2, ..., X_n$ denote the consumption of milk on n randomly chosen days. Bala has reasons to believe that θ has a prior distribution given by Gamma(a, b), a > 0, b > 0 known.
 - (a) Suggest a method of moments estimator for θ based on the random sample $X_1, X_2, ..., X_n$.
 - (b) Obtain posterior distribution of θ given the observations $X_1, X_2, ..., X_n$. Obtain mean and variance of the posterior distribution of θ .
 - (c) Suggest Bayes estimator for θ .

[11]

3. Let $X_n, Y_n, n \ge 1$ be sequences of random variables and X be a random variable, all defined on the same probability space, such that $X_n \xrightarrow{d} X$ and $Y_n \xrightarrow{p} c$, where c is a finite constant. Suppose g: $\mathbb{R} \longrightarrow \mathbb{R}$ is a continuous function and $a, b \in \mathbb{R}$ then prove that $g(X_n) + aY_n + b \xrightarrow{d} g(X) + ac + b$.

[11]

4. A machine produces metal rods produced in automobile suspension system. A random sample of 12 rods is selected and the diameter of each of the rods is measured. The resulting data in mm are shown here:

 8.23
 8.31
 8.42
 8.29
 8.19
 8.24

 8.19
 8.29
 8.30
 8.14
 8.32
 8.40

The machine is supposed to be producing rods of diameter $8.20 \, mm$.

- (a) List carefully the assumptions you must make and formulate the problem of testing of hypotheses for the problem mentioned below in (b).
- (b) Is there evidence to indicate that mean rod diameter is different from 8.20 mm at 5% level of significance.
- (c) Find the *p-value* of the test.
- (d) Find 90% confidence interval for the expected rod diameter.

[11]

- 5. A semiconductor manufacturer produces controllers used in automobile engine applications. The customer requires that the process fallout or the fraction defective at a critical manufacturing step not exceed 0.05 and that the manufacturer demonstrate process capability at this level of quality using $\alpha = 0.05$. The semiconductor manufacturer takes a random sample of 200 devices and finds that 4 of them are defective. Can the manufacturer demonstrate the process capability to the customer. Let θ be the probability of a device being defective.
 - (a) List carefully the assumptions you must make to formulate the problem of testing of hypotheses $H_0: \theta \leq 0.05$ versus $H_1: \theta > 0.05$
 - (b) Carry out a test at 5% level of significance.
 - (c) Find the *p-value* of the test.
 - (d) Find 90% confidence interval for the fraction of defective devices produced.